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In the framework of the Debye–Smoluchowski theory and in local electric field approximation, an 
expression of the dielectric susceptibility tensor is derived for a single layer of spontaneously polarized 
polar dielectric in the field of a monochromatic radiation. It is shown that the AC radiation also generates 
or induces magnetic moments with a density that is expressed by the components of the dielectric 
susceptibility tensor of the layer.
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1. Introduction

In equilibrium, the polar groups of phospholipid molecules, lo-
cated on opposite sides of the cell membrane, are oriented mirror 
asymmetrically to each other [1–3]. By the method of minimiza-
tion of phospholipid bilayers free energy, it was shown the ex-
istence in [1] of a finite inclination angle and lower and upper 
limits of its variation. Further, it was shown in [4] that the inclina-
tion angle of the dipoles strongly depends of the ratio of water to 
phospholipid concentrations.

The existence of spontaneously aligned rigid dipoles makes the 
system a strongly anisotropic biaxial material with electromagnetic 
properties completely different from the properties of the nematic 
liquid crystals [3]. In present theories of dielectric permittivity of 
a lipid bilayer [5], the contributions of the inclination of dipoles 
in the electromagnetic properties of cell membrane are ignored. 
This paper aims to investigate the problem of the influence of the 
spontaneous polarization on the dynamic, dielectric properties of 
the cell membrane in the field of a homogeneous AC radiation and 
so to eliminate the drawback in existing modern theories.

This paper is arranged as follows. It contains the theoretical 
part, which includes Sec. 2, of the mathematical description of 
the spontaneous polarization of a single layer of polar dipoles. In 
Sec. 3, we solve the Debye–Smoluchowski kinetic equation in the 
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Fig. 1. Mirror asymmetrically arrangement of the phospholipid molecules and single 
rigid dipole with inclination angle θ .

presence of an AC external field. The polarization tensor of a single 
rigid dipole is found in Sec. 4, which is used in Sec. 5 to calcu-
late the dielectric susceptibility in the local field approximation. In 
Sec. 6, we show a method of calculating the magnetic moment as-
sociated with the bounded dipole layer.

2. Spontaneous polarization

Because of the mirror symmetry arrangement of phospholipid 
molecules as seen in Fig. 1, we will consider single layers of spon-
taneously inclined dipoles.

The polarization of a rigid dipole is defined only by its direc-
tion n

p = pn. (1)

To handle mathematically the spontaneously alignment p0 = pn0

of the dipole parallel to the vector n0 = (sinθ0, 0, cosθ0) in the 
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plane xoz, we introduce a static, auxiliary electric field E0 acting 
in that direction

E0 = E0n0. (2)

The dipole–field interaction U0 is given by

U0 = −p E0. (3)

The Boltzmann distribution of dipole moments in equilibrium at 
temperature T is

f 0 = Ce−w0(n0n), w0 = pE0/T , (4)

where the coefficient C is defined from the normalization condi-
tion∫

f 0dn = 1 (5a)

and it is expressed via a hyperbolic sine function

C = w0/(4π sinhw0). (5b)

To assure the correctness of the description of the spontaneous 
polarization, we consider the limit T → 0 of expression (4) for 
the distribution function f 0. Using the limit representation of the 
Dirac function

δ (x) = 1

2
lim

ε→∞εe−ε|x|

we obtain

lim
T →0

f 0 = 1

π
δ
(

1 − n0n
)

, (6)

which indicates that at temperature T = 0, the dipoles are “frozen” 
parallel to n0.

In equilibrium at the finite temperature T , the dipole (1) fluctu-
ates around, n0. We can find, using expression (4) for distribution 
function, that the average polarization 〈p〉0

〈p〉0 = p0L(w0), (7a)

where L is the Langevin function

L (x) = cothx − 1/x. (7b)

Our result (7) is consistent with the mean electric moment cal-
culated in [6].

3. The Debye–Smoluchowski equation

We first introduce the interaction V of the dipoles with a ho-
mogeneous and monochromatic electric field with the amplitude 
E and frequency ω

V = −Edeiωt . (8)

Then total field–dipole interaction U is given by

U = U0 + V . (9)

The distribution function of rigid dipoles f obeys the Debye–
Smoluchowski equation [7,8]

∂t f − D� f − ζ−1 [∇f ·∇U + f �U ] = 0, (10)

where D , ζ are the diffusion and the friction coefficients, respec-
tively.

In the absence of a time dependent electric field E , the system 
is in equilibrium and D = T /ζ and the distribution function f is 
given by f 0 in (4). In the presence of the field E , we describe 
the distortions from the equilibrium by introducing a function F , 
defined by the product,

f = F f 0. (11)

We restrict our consideration in domains of small external electric 
fields and then, in the linear approximation of V , substitution of 
(11) in the Debye–Smoluchowski equation (10) gives us the equa-
tion for F

ζ∂t F + ∇U0 ·∇F − T �F = �V − T −1∇U0 ·∇V. (12)

Expanding F in the basis of spherical functions

F = 1 + eiωt
∑
l,m

al,mYl,m(n) (13)

we obtain a set of nonhomogeneous algebraic equations for the 
amplitudes al,m . Because of the strong oscillating character of 
higher harmonics of Yl,m , we may consider the contributions of 
only the first four harmonics Y0,0 and Y1,m and so we obtain the 
following expression for F of (12)

F = 1 + p(nE)

T (1 + iωτ)
eiωt . (14)

In the absence of an initial polarization, that is, w0 = 0, the re-
sponse of the system to an external electric field is isotropic and 
that is equal to the corresponding Debye’s expression [7].

4. Polarization tensor

Consider the distribution function

f = f 0 + f 1. (15)

For any quantity g , we introduce the notation 〈g〉0,1 for the av-
erages of g over f 0 and f 1, respectively. We suppose f 0 to be 
normalized, i.e., 〈1〉0 = 1 while the normalization integral of f 1 is 
〈1〉1, that is different of 1. In the linear approximation of f 1, the 
average of g in the state (15) 〈g〉 is given by

〈g〉 = 〈g〉1 − 〈g〉0 〈1〉1 . (16)

Now, if we suppose the correction of f 1 to be proportional to f 0

(see (11) and (14)), then f 1 = λ f 0 and so

〈g〉 = 〈λg〉0 − 〈λ〉0 〈g〉0 (17)

for the average value of quantity g in linear approximation. In (17)
〈. . . 〉0 is the average in the 0-order distribution f 0.

Defining the time dependent part of the dipole moment by

〈p〉 (t) = 〈p(ω)〉 eiωt,

where 〈p(ω)〉 is related to the polarization tensor αi j by

〈pi(ω)〉 = αi j (ω) E j (18)

and using (17) and (18), we find for the polarization tensor in the 
perturbed state (14) that

αi j (ω) = α (ω) [δi j + 2βn0
i n0

j ], (19)

where

α (ω) = d2L

w0T (1 + iωτ)
, (20)

2β = 3 + (w0/L)(L2 − 1) (21)

and L is Langevin function (7b). In the limit w0 → 0, with 
w−1L → 1/3, we obtain
0
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α (ω) → d2

3T (1 + iωτ)
and β → 0. (22a)

The polarization tensor (19) of the free polar dipoles [7,8] be-
comes

αi j (ω) → d2

3T (1 + iωτ)
δi j. (22b)

On the other hand, in the limit of saturation, that is, w0 → ∞, 
L ∼ 1 − w−1

0 and 2β → 1, then αi j (ω) → 0 as

αi j (ω) ∼ d2 w−1
0

T (1 + iωτ)
[δi j + n0

i n0
j ]

i.e., no polarization in this limit (frozen dipoles).

5. Dielectric susceptibility

We consider a system of point rigid dipoles located on the 
plane xoy. We suppose the dipoles arranged in the form of a square 
lattice with lattice constant a and surface density N . The polariza-
tion is given by

P i(ω) = Nαi j (ω) Eloc
j (ω), (23)

where E loc is the field of all other dipoles acting on a single dipole 
located at the origin of coordinates

E loc = E +
∑

n,m �=0,0

En,m. (24)

The second term in (24) is calculated in [9] for square, triangular 
and honeycomb lattices. For the square lattice, in the nonretarded 
limit of the electromagnetic interaction, the x and y components 
of the scattered field are given by

∑
n,m �=0,0

(
En,m

)
x,y = 2gdx,y(ω), (25)

where g is related to the lattice spacing a as follows

g = 4.51681a−3. (26)

Using the expressions of the local field (24), (25) and its connec-
tion with the polarization (23), we obtain

Λi j Eloc
j = El, (27)

where the matrix Λ̂ is given by

Λ̂ =
⎡
⎣ 1 − 2gαxx 0 −gαzx

0 1 − 2αyy 0
−gαzx 0 1 + gαzz

⎤
⎦ . (28)

Solving equation (27), we find the local electric field acting on 
a dipole in the lattice. Then, using definition (23), we find the 
following nonzero diagonal components for the electric suscepti-
bility χi j

χyy = Nα(1 − 2αg)−1

χxx = χ [(γ − cos2θ0) (z + γ + cos2θ0) − sin22θ0] (29a)

χzz = χ
[
(γ + cos2θ0) (z − 2γ + 2cos2θ0) − sin22θ0

]
.

The susceptibility tensor is not symmetric and it has only two 
nonzero off-diagonal elements, viz.

χzx = χ zsin2θ0 (29b)

χxz = χ (z − 3γ + 3cos2θ0) sin2θ0,
where we have used the definitions

γ = 1 + β−1, z = (αβg)−1

and

χ = Ng−1[3cos22θ0 + 3zcos2θ0 + (z − 2γ ) (z + γ ) − 1]−1.

In the absence of spontaneous polarization, that is, w0 → 0, we 
see that χxx is equal to χyy , i.e., the symmetry in the plane xoy
is recovered. In the limit of strong saturation, that is, w0 → ∞, 
χi j → 0 as is the case for the polarization tensor αi j (19).

6. Magnetization

There is a restriction in the polar dipole system under consider-
ation, viz., the dipoles are not completely free but one end of the 
dipole is bound to the surface of the membrane. This fact allows 
lipid bilayers magnetic properties in the field of microwave radia-
tion: the free end of the dipole acts as a rigid charge rotor, which 
carries a magnetic moment. The accurate theory of these phenom-
ena should be based on Kapitza’s method of solution governing 
the equations for the rigid rotor in the field of a microwave radia-
tion [10,11]. However, we can find the magnetization of the single 
layer of the spontaneously polarized polar dielectric directly from 
the expression for the dielectric susceptibility (28).

To find the trajectory of the free end of the dipole, we go from 
the limit of point dipole to extended dipole moments having the 
same dipole moment. Suppose the free end of the dipole carries a 
charge q, then we can define the trajectory by using the definition 
of the dipole moment

xi(t) = q−1 Re{di (ω) eiωt}. (30)

We define the vector S of the trajectory enclosed in an area by the 
expression

Si = 1

2

∮
εi jlx j ẋl, (31)

where εi jl is the three-dimensional Levi-Civita symbol. Then using 
(30), we find for the z component of S

Sz = πq−2 Im[dx (ω)d∗
y (ω)]. (32)

The remaining components of S can be obtained by a cyclic per-
mutation of the indices in (32).

We define the magnetization vector M in analogy to the set of 
periodic loop currents with surface density N

M = qωN S . (33)

Then, using (28) and (32) we find for Mz

Mz = mij Im[χxiχ
∗
yje

iδi j ], (34)

where δi j is the phase difference of i-th and j-th components of 
the complex amplitudes Ei and E j . In (34) we define the tensor

mij = πω(Nq)−1 |α|2 ∣∣Ei E j
∣∣ . (35)

The remaining components of M can be obtained from (34) by a 
cyclic permutation of the indices x, y, and z.

7. Summary

The polar groups of phospholipid molecules, located on oppo-
site sides of the cell membrane, are spontaneously polarized and 
thus bringing additional electrical and magnetic properties of the 
membrane in the field of a microwave radiation. Owing to the mir-
ror symmetry of arrangement of phospholipid molecules, the lipid 
bilayer can be considered as a combination of two independent 
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single layers of spontaneously inclined dipoles. In the framework 
of the Debye–Smoluchowski theory and in local electric field ap-
proximation, an expression of the dielectric susceptibility tensor is 
derived for a single layer of spontaneously polarized polar dielec-
tric in the field of monochromatic radiation. It is shown that the 
AC radiation stimulates also magnetic moments with a density that 
is expressed by components of the dielectric susceptibility tensor 
of the layer.
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